Что называется циркуляцией. Циркуляция судна

Циркуляция судна.

Циркуляция и ее периоды.

Циркуляцией называется процесс изменения кинематических параметров двигавшегося прямолинейно равномерно судна в ответ на ступенчатую перекладку руля, начиная с момента ее задания для отработки. Траектория, которую описывает ЦМ судна в этом процессе, также носит название циркуляции.

Циркуляционное движение по времени принято разделять на три периода: маневренный, эволюционный (переходной), установившийся. Прежде чем давать определения этих периодов, уточним, что понимается под установившимся криволинейным движением судна.

Установившимся прямолинейным движением судна называется его перемещение одним курсом с постоянной скоростью.

Установившееся вращательное движение представляет собой вращение судна относительно ЦМ с неизменной угловой скоростью.

Криволинейное перемещение судна складывается из поступательного и вращательного. Под установившимся криволинейным перемещением понимается движение судна, при котором с течением времени угловая и линейная скорость ЦМ судна не изменяются ни по величине, ни по направлению относительно осей, жестко связанных с судном. Таким образом, установившееся криволинейное движение судна характеризуется постоянством угловой скорости , угла дрейфа и путевой скорости судна.

В процессе циркуляционного движения дольше всего приходит к установившемуся значению линейная скорость судна. На конечном этапе приближение линейной скорости судна к установившемуся значению является монотонным и медленным. У крупнотоннажных судов на циркуляции линейная скорость может достигать постоянного значения после поворота на угол, больший 270°. Кроме того, на установившейся циркуляции у судна могут наблюдаться малые колебания в угле дрейфа и в угловой скорости. Поэтому возникает вопрос, с какого момента времени движение судна на циркуляции считать установившимся.

Ориентируясь на принятую в теории автоматического управления границу между эволюционным и установившимся перемещением, можно считать, что циркуляционное движение судна устанавливается, когда текущие значения , , начинают отличаться от своих установившихся значений
меньше, чем на 3-5%.

Ввиду того, что угол дрейфа на циркуляции не измеряется, а линейная скорость судна измеряется с большой погрешностью, за начало установившегося периода циркуляции обычно принимается момент, после которого изменение курса становится практически равномерным. Для среднетоннажных судов этот момент наступает после поворота судна примерно на 130°. Однако исследования показывают, что при циркуляционном движении угловая скорость устанавливается быстрее, чем и . Угол дрейфа и особенно линейная скорость судна достигают 3-ь5% приближения к своим установившимся значениям позднее.

Теперь можно дать определения периодов циркуляции.

Маневренный период (
) - период перекладки руля от нуля до выбранного значения, начиная с момента задания рулевому устройству для отработки выбранного значения.

Эволюционный период () - интервал времени с момента окончания перекладки руля, до момента, когда криволинейное движение судна становится установившимся.

Установившийся период начинается с момента окончания второго периода и продолжается до тех пор, пока руль остается в заданном переложенном положении.

Для оценки и сравнения управляемости судов используются циркуляции при эталонных условиях. Начало циркуляции соответствует моменту задания перекладки руля, а конец - моменту поворота ДП судна на угол 360°. Схематически траектория такой циркуляции показана на рис 3.1

Рис.3.1 Схема циркуляции судна.

Параметры циркуляции.

При рассмотрении циркуляции выделяют основные и дополнительные ее элементы.

Основными являются такие параметры циркуляции.

Диаметр установившейся циркуляции - расстояние между положениями ДП судна на противоположных курсах при установившемся движении на циркуляции, обычно между ДП в момент поворота на 180° и ДП в момент поворота на 360°

Тактический диаметр циркуляции - расстояние между линией первоначального курса и ДП судна после поворота его на 180 . Тактический диаметр может составлять (0,9-1,2)

Выдвиг - расстояние между положениями ЦМ судна в момент начала перекладки руля и в момент после поворота ДП на 90 , измеренное в направлении первоначального курса. Приближенно

Прямое смещение - расстояние от линии первоначального курса до ЦМ судна, развернувшегося на 90°. Оно составляет порядка
.

Обратное смещение - наибольшее отклонение ЦМ судна от линии первоначального курса в сторону, противоположную перекладке руля. Обратное смещение мало и составляет
.

Угол дрейфа - угол между ДП и вектором скорости судна.

Период циркуляции - интервал времени с момента начала перекладки руля до момента поворота судна на 360°.

Из дополнительных параметров циркуляции наиболее важными с точки зрения обеспечения безопасности маневрирования являются.

Полуширина выметаемой полосы - расстояние от циркуляционной траектории, на котором находятся наиболее удаленные от нее точки корпуса при совершении циркуляции;

Расстояние - расстояние от положения ЦМ судна в начальный момент циркуляции до точки, в которой корпус судна уходит с линии первоначального курса;

Максимальный выдвиг оконечности судна - наибольшее расстояние вдоль начального курса от положения ЦМ судна в начальный момент циркуляции до крайней оконечности судна в процессе маневра (аналогично может быть определен максимальный выдвиг центра массы судна, называемый просто максимальным выдвигом);

Максимальное прямое смещение оконечности судна - наибольшее боковое отклонение от линии начального курса до крайней оконечности судна в процессе циркуляции (аналогично может быть определено максимальное прямое смещение центра массы судна, называемое просто максимальным прямым смещением).

Основной параметр поворотливости судна, диаметр установившейся циркуляции , мало зависит от скорости судна перед началом маневра. Это обстоятельство подтверждено многочисленными натурными испытаниями. Однако выдвиг судна не обладает этим свойством и зависит от начальной скорости судна. При циркуляции с малого хода выдвиг порядка на 10-5-20% меньше выдвига с полного хода. Поэтому на ограниченной акватории при отсутствии ветра перед выполнением поворота на большой угол целесообразно сбавить ход.

Кривая линия, которую описывает центр тяжести судна при перекладке руля на некоторый постоянный угол, называется циркуляцией. Различают три следующих характерных периода циркуляции судна. Маневренный, в течение которого происходит перекладка руля (10-15 сек при перекладке на борт). Эволюционный, в течение которого изменяются координатные параметры судна (угол дрейфа судна и его угловая и линейная скорости).

Он начинается с окончания перекладки руля и заканчивается примерно после изменения курса судна на 90-120°. Установившийся, в продолжение которого координатные параметры судна остаются неизменными. Кривая при этом приобретает форму правильной окружности, диаметр которой называется диаметром установившейся циркуляции Dц (рис. 41). Он является мерой поворотливости судна и выражается в длинах корпуса судна.


Циркуляция судна характеризуется: тактическим диаметром DT - расстоянием по прямой между линией первоначального курса и диаметральной плоскостью судна при повороте на 180°, D = 1,1 Dц; выдвигом 11 - расстоянием между положением центра тяжести судна в момент начала перекладки руля и диаметральной плоскостью судна при изменении курса на 90°, l1 = 0,6 / 1,20ц; прямым смещением l2 - расстоянием, на которое смещается центр тяжести судна от линии первоначального курса при повороте на 90°, l2 = 0,25 + 0,5 Dц, и обратным смещением l³ - расстоянием, на которое смещается центр тяжести судна от линии первоначального курса при циркуляции в сторону, противоположную повороту, l³ ~ до 0,1 Dц.

Судно на циркуляции всегда приобретает дрейф, при этом диаметральная плоскость его располагается не по касательной к окружности (его носовая часть всегда находится внутри циркуляции).

Угол между диаметральной плоскостью судна и касательной к циркуляции называется углом дрейфаф. Вследствие этого судно на циркуляции занимает полосу, значительно большую, чем ширина судна. Угол дрейфа и обратное смещение всегда надо учитывать при производстве маневров на ограниченных акваториях.

На циркуляции уменьшается скорость судна до 35% при неизменном числе оборотов движителей и появляется крен. У водоизмещающих судов крен возникает на тот борт, который находится с внешней стороны циркуляции, и может достигать значительной величины. Циркуляция судна характеризуется еще и своим периодом.

Этот период - промежуток времени, в течение которого судно описывает полную циркуляцию, т. е. от момента фактического начала поворота до момента прихода судна на первоначальный курс.

Во время плавания редко приходится производить полную циркуляцию, но ее элементы необходимо учитывать, когда предстоит менять курс (делать поворот судна).

При графическом счислении учитывают величину тактического диаметра циркуляции Dт или ее радиус

Определение элементов циркуляции

Элементы циркуляции обычно определяют в период ходовых сдаточных испытаний на трех основных скоростях (полной, средней и малой) переднего хода и при перекладке руля на 15° и «на борт» (на предельный угол) в обе стороны для судов с одним и тремя винтами и в одну - для судов с двумя и четырьмя винтами.

Существует несколько способов определения элементов циркуляции. Наиболее распространенными из них являются: способ подвижного базиса; по двум горизонтальным углам; по створу и горизонтальным углам.


Рис. 42


Способ подвижного базиса заключается в следующем. В районе испытаний устанавливается буй. На судне на известном расстоянии друг от друга (назовем его базисом) находятся два наблюдателя с секстанами (один в носовой части, а другой на корме). Судно идет на некотором расстоянии от буя на заданной скорости, и по команде руководителя испытаний, обычно через 20-25 сек с момента перекладки руля, наблюдатели одновременно измеряют углы между диаметральной плоскостью и буем, в этот же момент замечается курс по компасу. Затем на планшете строят графики изменения величин углов (курсовых и курса судна) по времени.

На рис. 42 показано построение положения судна при циркуляции в первый момент наблюдения. Точка О - место положения буя, линия N0 - меридиан. В соответствии с курсом судна КК в момент первого наблюдения проводим линию I через точку О и на этой линии в точке О строим курсовые углы КУa1 И КУв1, измеренные наблюдателями. Затем откладываем отрезок ОС, в масштабе равный базису.

Потом из точки С проводим линию CP , параллельную ОД. Далее из точки пересечения линий CF с ОЕ проводим линию II, параллельную линии курса, до пересечения с ОД. Положение отрезка АВ и будет соответствовать положению диаметральной плоскости судна на циркуляции в первый момент наблюдений. Если произвести такие построения в каждый момент наблюдений - от начала маневра до поворота на обратный курс, то можно вычертить циркуляцию, произвести определение величины ее диаметра, ширины полосы, занимаемой судном на циркуляции, угла дрейфа и т. д. Угол крена определяется по кренометру.

По двум горизонтальным углам элементы циркуляции можно определять в районе, где имеются хорошо видимые с судна три ориентира. При этом их расположение должно быть таким, чтобы измеряемые с судна на циркуляции углы между средним и крайними ориентирами изменялись в пределах не менее 30° и не более 150°.

Судно должно идти на заданной скорости. С момента перекладки руля через каждые 20-25 сек два наблюдателя по команде одновременно измеряют секстанами горизонтальные углы (рис. 43, а) между предметами АВ (а) и ВС(b). Затем на карте большого масштаба или на плане наносят все обсервованные точки от начала выхода на циркуляцию до поворота судна на обратный курс (Р1, Р2 и т.д.) и через них проводят плавную кривую, которая и будет циркуляцией. Далее определяют диаметр циркуляции и другие ее элементы.


Рис. 43


По створу и горизонтальным углам можно определить лишь величину тактического диаметра циркуляции DT. Для этого необходимо иметь створ (рис. 43, б) и еще ориентир, расположенный перпендикулярно линии створа на известном расстоянии l. Судно должно подойти к линии створа на установившейся скорости курсом, перепендикулярным ей. В момент пересечения створа перекладывают руль на установленный угол, включают секундомер и измеряют угол а1 между линией створа и ориентиром Е. С приходом судна обратным курсом на линию-створа останавливают секундомер, измеряют угол а2 между линией створа и ориентиром Е.

Расчет величины тактического диаметра получают из выражения


Точность рассчитанной величины DT будет зависеть от точности измеренных углов и расстояния l.

Время, отсчитанное по секундомеру, даст продолжительность полупериода циркуляции , т. е. время, затраченное судном при повороте на 180°.

Таблица циркуляции

Предположим, что на судне, идущем курсом АК1 (рис. 44), в точке В переложили руль на правый борт и оно, описав дугу S, в точке С легло на новый курс СК2 Дугу S примем за дугу окружности, центр которой расположен в точке О. Соединив точки В, Е и С с центром циркуляции О, получим две пары симметрично расположенных прямоугольных треугольников EBF = ECF и ВОЕ = СОЕ, из которых получим


откуда


а также


Рис. 44


Когда радиус циркуляции Rц и угол поворота а известны, то по формулам (31) и (32) можно рассчитать длину d промежуточного курса (ИК cp) и расстояние d1 до точки пересечения нового курса с первоначальным.

Кроме этих величин, на практике встречается необходимость знать длину пути (дуги) поворота S и время поворота. Для расчета S пользуются формулой


или
где


Для расчета времени поворота Т на заданный угол пользуются формулой
Для ускорения графических построений на карте, связанных с расчетами длины пути поворота S, времени поворота Г, угла поворота на

Промежуточный курс α/2 длины d промежуточного курса и расстояния d1 при углах поворота до 150° заранее составляют таблицы циркуляции. Они составляются для разных углов перекладки руля, скоростей хода и загрузки судна (в грузу и порожнем).

Образец такой таблицы для угла перекладки руля на 15° при скорости 10 узлов, D T = 3 кбт, Т 180 = 4 мин представлен табл.4. Для углов поворота более 150° такие таблицы не составляют, так как величина d1 становится слишком большой (d1 = RЦ t g a/2, a tgl80°=~) . промежуточный курс длины d промежуточного курса и расстояния

Таблица 4


Табл. 30 (МТ-63) дает возможность по величинам Rц и T 180 выбрать для различных углов поюрота на новый курс а элементы циркуляции: S, d, d 1 T .

Приемы учета циркуляции

Моменты поворота судна для изменения курса обычно заранее рассчитывают и повороты выполняют: на траверзе какого-либо маяка или знака; на пересечении секущего створа; по приходе на линию заранее выбранного пеленга какого-либо ориентира; по показанию лагом заранее рассчитанного отсчета или по заранее рассчитанному моменту времени по часам.

Во всех случаях для намеченного момента поворота обязательно рассчитываются ожидаемые показания лага и время по часам. Если окажется, что фактическое показание лага или время по часам разойдутся с заранее рассчитанными, то необходимо сразу же отыскать ошибку в расчетах.

Определив момент поворота, подают команду рулевому, замечают отсчет лага и время по часам. Затем на карте масштаба 1:500 000 и крупнее выполняют необходимые графические построения для нанесения циркуляции. При плавании вдали от берегов элементы циркуляции учитывают только при частых изменениях курса и при поворотах на угол более 30°.

Для расчета угла поворота а пользуются следующими формулами: при повороте вправо


а при повороте влево
Элементы циркуляции можно учитывать, пользуясь табличным или графическим приемами.

Табличный прием. Пусть судно следует курсом ИК1 и в точке А (рис. 45, а) делают поворот. Из этой точки под углом a/2 к ИК1 проводят линию промежуточного курса, на которой откладывают величину d, выбранную из табл. 30 (МТ-63). Точка В укажет конец поворота. Из этой точки проводят новый курс ИК2.


Рис. 45


В том случае, когда точка поворота А (рис. 45, б) на новый курс неизвестна, поступают следующим образом. От точки О (точки пересечения курсов) откладывают расстояние dl9 выбранное из табл. 30 (МТ-63) в обратную сторону по ИК1 и по ИК2. Полученные точки А и В покажут соответственно начало и конец поворота. Если угол а > 150°, то предварительно вычисляют промежуточный истинный курс по формуле
После этого из произвольной точки F на линии ИК1 (рис. 45, в) проводят линию ИКср и от той же точки на этой линии откладывают отрезок FG = d. Затем прокладывают линию нового курса на таком расстоянии от линии первоначального курса, чтобы между ними выше точки F можно было вместить отрезок, равный по величине d. Из точки G проводят параллельную ИКг, которая в пересечении с линией ИК2 даст точку В - точку конца поворота на новый курс, а засечка из точки В циркулем с раствором, равным d, даст на линии ИК1 точку на- чала поворота А. В этих случаях кривые циркуляции (дуги) обычно не проводят, за исключением случаев плавания в узкостях, шхерах я т. п.

Графический прием. Предположим, что судно следует ИК1 (рис. 46, а), а от точки начала поворота А ложится на новый курс. Из этой точки восстанавливаем перпендикуляр к линии ИК1 в сторону поворота и на перпендикуляре отложим расстояние RЦ, равное радиусу циркуляции в масштабе карты. Из полученной точки О как из центра радиусом OA описываем дугу АВ" . К этой дуге проводим касательную, соответствующую линии ИК2, точка касания В будет являться точкой конца поворота.


Рис. 46


В случаях, когда точки начала и конца поворота неизвестны, поступают следующим образом. Прокладывают линию ИК2 посредине фарватера или по линии створа (рис. 46, б), на который должно лечь судно после поворота. Затем в произвольных точках на линиях ИК1 и ИК2 (точки А1 и В2) восстанавливают перпендикуляры, на которых откладывают расстояния, равные радиусу циркуляции RЦ. От полученных точек О1 и О2 проводят линии, параллельные линиям курсов. Из точки пересечения этих линий (точки О) как из центра радиусом, равным О1А1 (02B1), описывают дугу; точки касания А и В с линиями истинных курсов укажут начало и конец поворота.

Вперед
Оглавление
Назад

Под поворотливостью судна подразумевается его способность изменять направление движения под воздействием руля (средств управления) и двигаться по траектории данной кривизны. Движение судна с переложенным рулем по криволинейной траектории называют циркуляцией . (Разные точки корпуса судна во время циркуляции движутся по разным траекториям, поэтому, если специально не оговаривается, под траекторией судна -подразумевается траектория его ЦТ.)

При таком движении нос судна (рис.1) направлен внутрь циркуляции, а угол а0между касательной к траектории ЦТ и диаметральной плоскостью (ДП) называется углом дрейфа на циркуляции .

Центр кривизны данного участка траектории называют центром циркуляции (ЦЦ), а расстояние от ЦЦ до ЦТ (точка О) - радиусом циркуляции .

На рис. 1 видно, что различные точки по длине судна движутся по траекториям с разными радиусами кривизны при общем ЦЦ и имеют разные углы дрейфа. Для точки, рас­положенной в кормовой оконечности, радиус циркуляции и угол дрейфа - максимальны. На ДП судна имеется особая точка-полюс поворота (ПП), которой угол дрейфа равен нулю, Положение ПП, определяемое перпендикуляром, опущенным из ЦЦ на ДП, сме­щено от ЦТ по ДП в нос приблизительно на 0,4 длины судна; величина такого смещения на различных судах изменяется в небольших пределах. Для точек на ДП, расположенных по разные стороны от ПП, углы дрейфа имеют противоположные знаки. Угловая скорость судна в процессе циркуляции сначала быстро возрастает, достигает максимума, а затем, по мере смещения точки приложения силы Yo в сторону кормы, несколько снижается. Когда моменты сил РуиYo уравновесят друг друга, угловая скорость приобретает установившееся значение.

Циркуляция судна разделяется на тря периода: маневренный, равный времени перекладки руля; эволюционный - с момента окончания перекладки руля до момента, когда линей­ная и угловая скорости судна приобретают установившиеся значения; установившийся - от окончания эволюционного периода и до тех пор, пока руль остается в переложенном положении. Элементами, характеризующими типичную циркуляцию, являются (рис.2):

Выдвиг l1 - расстояние, на которое перемещается ЦТ судна в направлении первона­чального курса с момента перекладки руля до изменения курса на 90°;

Прямое смещение l2 - расстояние от первоначального положения ЦТ судна до положения его после поворота на 90°, измеренное по нормали к первоначальному направлению движения судна;

Обратное смещение l3- расстояние, на которое под влиянием боковой силы руля ЦТ судна смещается от линии первоначального курса в сторону, обратную направлению поворота;

Тактический диаметр циркуляции DT - кратчайшее расстояние между ДП судна в начале поворота а ее положением в момент изменения курса на 180°;

Диаметр установившейся циркуляции Dуст - расстояние между положениями ДП судна для двух последовательных курсов, отличающихся на 180°, при установившемся дви­жении.

Четкую границу между эволюционным периодом и установившейся циркуляцией обозна­чить невозможно, так как изменение элементов движения затухает постепенно. Условно можно считать, что после поворота на 160-180° движение приобретает характер, близкий кустановившемуся. Таким образом, практическое маневрирование судна происходит всегда при неустановившемся режиме.

Элементы циркуляции при маневрировании удобнее выражать в безразмерном виде - в длинах корпуса:

в таком виде легче сравнивать между собой поворотливость различных судов. Чем меньше безразмерная величина, тем лучше поворотливость.

Элементы циркуляции обычного транспортного судна для данного угла перекладки руля практически не зависят от начальной скорости при установившемся режиме работы двигателя. Однако, если при перекладке руля увеличить обороты винта, то судно совершит поворот более крутой, чем при неизменяемом режиме главного двигателя (ГД).

Прилагается два рисунка.

Рис.1 Рис.2

Циркуляцией называют траекторию, описываемую ЦТ судна, при движении с отклоненным на постоянный угол рулем. Циркуляция характеризуется линейной и угловой скоростями, радиусом кривизны и углом дрейфа. Угол между вектором линейной скорости судна и ДП называютуглом дрейфа . Эти характеристики не остаются постоянными на протяжении всего маневра.

Циркуляцию принято разбивать на три периода: маневренный, эволюционный и установившийся.

Маневренный период – период, в течение которого происходит перекладка руля на определенный угол. С момента начала перекладки руля судно начинает дрейфовать в сторону, противоположную перекладке руля, и одновременно начинает разворачиваться в сторону перекладки руля. В этот период траектория движения ЦТ судна из прямолинейной превращается в криволинейную с центром кривизны со стороны борта, противоположного стороне кладки руля; происходит падение скорости движения судна.

Эволюционный период – период, начинающийся с момента окончания перекладки руля и продолжающийся до момента окончания изменения угла дрейфа, линейной и угловой скорости. Этот период характеризуется дальнейшим снижением скорости (до 30 – 50%), изменением крена на внешний борт и резким выносом кормы на внешнюю сторону.

Период установившийся циркуляции – период, начинающийся по окончании эволюционного, характеризуется равновесием действующих на судно сил: упора винта, гидродинамических сил на руле и корпусе, центробежной силы. Траектория движения ЦТ судна превращается в траекторию правильной окружности или близкой к ней.

Геометрически траектория циркуляции характеризуется следующими элементами:

диаметр установившейся циркуляции – расстояние между диаметральными плоскостями судна на двух последовательных курсах, отличающихся на 180° при установившемся движении;

тактический диаметр циркуляции – расстояние между положениями ДП судна до начала поворота и в момент изменения курса на 180°;

l1 выдвиг – расстояние между положениями ЦТ судна перед выходом на циркуляцию до точки циркуляции, в которой курс судна изменяется на 90°;

l2 прямое смещение – расстояние от первоначального положения ЦТ судна до положения его после поворота на 90°, измеренное по нормали к первоначальному направлению движения судна;

l3 обратное смещение – наибольшее смещение ЦТ судна в результате дрейфа в направлении, обратном стороне перекладки руля (обратное смещение обычно не превышает ширины судна В, а на некоторых судах отсутствует совсем);

период циркуляции – время поворота судна на 360°.

Рис. 1.8. Траектория судна на циркуляции

Перечисленные выше характеристики циркуляции у морских транспортных судов среднего тоннажа при полной перекладке руля на борт можно выразить в долях длины судна и через диаметр установившейся циркуляции следующими соотношениями:

Dо = (3 ÷ 6)L; Dц = (0,9 ÷ 1,2)Dу; l1 = (0,6 ÷ 1,2)Dо ;

l2 = (0,5 ÷ 0,6)Dо; l3 = (0,05 ÷ 0,1)Dо; Tц = πDо/Vц .

Обычно величины Dо; Dц; l1; l2; l3 выражаются в относительном виде (делят на длину судна L ) – легче сравнивать поворотливость различных судов. Чем меньше безразмерное отношение, тем лучше поворотливость.

Скорость на циркуляции для крупнотоннажных судов снижается °с перекладкой руля на борт на 30%, а при повороте на 180° – вдвое.

Необходимо отметить и следующие положения:

а) начальная скорость оказывает влияние не столько на , сколько на ее время и выдвиг, и только у высокоскоростных судов заметны в большую сторону;

б) с выходом судна на траекторию циркуляции оно приобретает крен на внешний борт, значение которого по правилам Регистра не должно превышать 12 °;

в) если во время циркуляции увеличивать число оборотов ГД, то судно совершит поворот более крутой;

г) при выполнении циркуляции в стесненных условиях следует учитывать, что кормовая и носовая оконечности судна описывают полосу значительной ширины, которая становится соизмеримой с шириной фарватера.

Циркуляцией называют траекторию, описываемую ЦТ судна, при движении с отклоненным на постоянный угол рулем. Циркуляция характеризуется линейной и угловой скоростями, радиусом кривизны и углом дрейфа. Угол между вектором линейной скорости судна и ДП называют углом дрейфа . Эти характеристики не остаются постоянными на протяжении всего маневра.

Циркуляцию принято разбивать на три периода: маневренный, эволюционный и установившийся.

Первый период (маневренный) – период, в течение которого происходит перекладка руля на определенный угол. С момента начала перекладки руля судно начинает дрейфовать в сторону, противоположную перекладке руля, и одновременно под влиянием сил Y p и Y p “ начинает разворачиваться в сторону перекладки руля. В этот период траектория движения ЦТ судна из прямолинейной превращается в криволинейную с центром кривизны со стороны борта, противоположного стороне кладки руля; происходит падение скорости движения судна.

Второй период (эволюционный) – период, начинающийся с момента окончания перекладки руля и продолжающийся до момента, когда наступает равновесие всех действующих на судно сил, а угол дрейфа (β ) перестает расти и скорость движения судна по траектории становится тоже постоянной. В этот период возрастают гидродинамические силы давления на корпус судна, возрастает угол дрейфа, кривизна траектории меняет знак, центр кривизны траектории перемещается внутрь циркуляции. Скорость движения судна вдоль траектории, начавшая падать в маневренный период, продолжает уменьшаться. Радиус траектории в эволюционный период является величиной переменной.

Третий период (установившийся) – период, начинающийся по окончании эволюционного, характеризуется равновесием действующих на судно сил: упора винта, гидродинамических сил на руле и корпусе, центробежной силы. Траектория движения ЦТ судна превращается в траекторию правильной окружности или близкой к ней.

Элементы циркуляции

Геометрически траектория циркуляции характеризуется следующими элементами:

диаметр установившейся циркуляции – расстояние между диаметральными плоскостями судна на двух последовательных курсах, отличающихся на 180º при установившемся движении;

D ц тактический диаметр циркуляции ДП судна до начала поворота и в момент изменения курса на 180º;

l 1 – выдвиг (поступь) – расстояние между положениями ЦТ судна перед выходом на циркуляцию до точки циркуляции, в которой курс судна изменяется на 90º;

l 2 – прямое смещение – расстояние от первоначального положения ЦТ судна до положения его после поворота на 90º, измеренное по нормали к первоначальному направлению движения судна;

l 3 – обратное смещение – наибольшее смещение ЦТ судна в результате дрейфа в направлении, обратном стороне перекладки руля (обратное смещение обычно не превышает ширины судна В , а на некоторых судах отсутствует совсем);

Т ц – период циркуляции – время поворота судна на 360º.

Перечисленные выше характеристики циркуляции у морских транспортных судов среднего тоннажа при полной перекладке руля на борт можно выразить в долях длины судна и через диаметр установившейся циркуляции следующими соотношениями:

Dо = (3 ÷ 6)L ; Dц = (0,9 ÷ 1,2)D у ; l 1 = (0,6 ÷ 1,2)Dо ;

l 2 = (0,5 ÷ 0,6)D о ; l 3 = (0,05 ÷ 0,1)D о ; T ц = πD о /V ц .

Обычно величины D о ; D ц ; l 1 ; l 2 ; l 3 выражаются в относительном виде (делят на длину судна L ) – легче сравнивать поворотливость различных судов. Чем меньше безразмерное отношение, тем лучше поворотливость.

Скорость на циркуляции для крупнотоннажных судов снижается при повороте на 90º с перекладкой руля на борт на , а при повороте на 180º – вдвое.

Для произвольной по длине судна точки «а » угол дрейфа определяется из известных формул тригонометрии:

где l a – отстояние точки «а » от ЦТ (в нос – «+ »; в корму – «»).

Необходимо отметить и следующие положения:

а) начальная скорость оказывает влияние не столько на D о , сколько на ее время и выдвиг; и только у высокоскоростных судов заметны некоторые изменения D о в большую сторону;

б) с выходом судна на траекторию циркуляции оно приобретает крен на внешний борт, значение которого по правилам Регистра не должно превышать 12º;

в) если во время циркуляции увеличивать число оборотов ГД , то судно совершит поворот более крутой;

г) при выполнении циркуляции в стесненных условиях следует учитывать, что кормовая и носовая оконечности судна описывают полосу значительной ширины, которая становится соизмеримой с шириной фарватера.

Безопасное выполнение поворота обеспечивается при условии, что ширина полосы движения в метрах:

где R ц.ср – средний радиус кривизны циркуляции на участке от начального до измененного на 90º курса;

β k – угол изменения курса судна;

β

Угол крена на установившейся циркуляции можно определить по формуле Г.А.Фирсова:

где V 0 – скорость судна на прямом курсе (в м/с);

h – начальная поперечная метацентрическая высота (м);

L – длина судна (м);

z g – ордината ЦТ судна;

d средняя осадка судна.

Криволинейная траектория, которую описывает центр тяжести судна при перекладке руля на некоторый угол и последующем удержании его в этом положении, называется циркуляцией.

Различают три периода циркуляции: маневренный, эволюционный и период установившейся циркуляции. Маневренный период циркуляции определяется началом и концом перекладки руля, т.е. по времени совпадает с продолжительностью перекладки руля. В этот период судно продолжает двигаться практически прямолинейно. Эволюционный период циркуляции начинается с момента окончания перекладки руля и заканчивается, когда элементы движения примут установившийся характер, т.е. перестанут изменяться во времени. Период установившейся циркуляции начинается с момента окончания эволюционного периода и длится все время, пока руль судна находится в переложенном положении.

Траектория криволинейного движения центра тяжести судна, т.е. его циркуляция характеризуется следующими элементами:

Диаметр установившейся циркуляции (Д ц) - диаметр окружности, описываемой судном в установившийся период циркуляции, который начинается после поворота судна на 90-180°; Тактический диаметp циркуляции (Д т) - кратчайшее расстояние между положением диаметральной плоскоскости судна в начале поворота и после изменения первоначального курса на 180°. Выдвиг l 1 расстояние, на которое смещается центр тяжести судна в направлении первоначального курса от точки начала циркуляции до точки, соответствующей изменению курса судна на 90°. Прямое смещение l 2 - расстояние от первоначального курса судна до точки положения центра тяжести в момент поворота судна на 90°. Обратное cмещение l 3 - наибольшее расстояние, на которое смещается центр тяжести судна от линии первоначального курса в сторону противоположную повороту.

Также к характеристикам циркуляции относят: период установившейся циркуляции Т - время поворота судна на 360°; угловую скорость вращения судна на установившейся циркуляции ω = 2π / Т.

Действия по приготовлению рулевого устройства пред выходом судна в море

Гирокомпасные направления. Поправка гирокомпаса

Гирокомпасный меридиан – направление, на котором устанавливается главная ось гирокомпаса

Гикокомпасный курс – направление диаметральной плоскости судна, измеряемое горизонтальным углом между северной частью гирокомпасного меридиана и носовой частью диаметральной плоскости судна.

Гирокомпасный пеленг – направление на ориентир, измеряемое горизонтальным углом между северной частью гирокомпасного меридиана и линией пеленга.

Обратный гирокомпасный пеленг – направление, обратное направлению на предмет.

Поправка Гирокомпаса – угол в плоскости истинного горизонта между истинными и гирокомпасными меридианами.

Виды качки судна. Элементы качки

Качка судна - колебательные движения, которые судно совершает около положения его равновесия. Различают три вида качки судов: а) вертикальную - колебания судна в вертикальной плоскости в виде периодических поступательных перемещений; б) бортовую (или боковую)-колебания судна в плоскости шпангоутов в виде угловых перемещений; в) килевую (или продольную) качку - колебания судна в диаметральной плоскости также в виде угловых перемещений. При плавании судна на взволнованной поверхности воды часто все три вида качки возникают одновременно или в различных комбинациях.

Два вида колебаний судна на качке: свободные (на тихой воде), которые происходят по инерции после прекращения сил, вызвавших их, и вынужденные , которые вызываются внешними периодически приложенными силами, например морским волнением.

Элементы качки:

Амплитудой качки (а)- наибольшее отклонение судна от исходного положения, измеренное в градусах.Размах качки (б)- сумма двух последовательных амплитуд (наклонение судна на оба борта).

Период качки (в) -время между двумя последовательными наклонениями или время, в течение которого судно совершает полный цикл колебаний, возвращаясь к тому положению, при котором начался отсчет.

28 (10.1) Назвать особенности режимов управления рулём: "простой", "следящий", "автоматический"



Похожие публикации