Электро рыба. Електрические поля в жизни рыб

Рыбы воспринимают электрическое поле постоянного тока обычно в виде ориентировочной двигательной реакции (они вздрагивают при включении и выключении тока). При увеличении напряженности поля наступает оборонительная реакция - так называемая стадия отпугивания: рыба сильно возбуждается и пытается выйти из зоны действия поля. Если напряженность увеличить еще больше, происходит анодная реакция. При дальнейшем повышении напряженности наблюдается электронаркоз: рыба теряет равновесие, подвижность и перестает реагировать на внешние раздражители Еще большее повышение напряженности электрического поля вызывает гибель рыбы.
Реакция рыб в электрических полях зависит от их ориентации в электрическом поле. Если рыба расположена головой к аноду, она возбуждается сильнее При постоянном повышении напряженности поля после первой стадии часто наблюдается анодная реакция - рыба движется к аноду.
Несколько иначе рыбы реагируют на электрические поля переменного тока. Первые две стадии примерно те же, но при дальнейшем повышении напряженности наступает стадия осциллотаксиса - рыба располагается поперек линий тока. Еще большее увеличение напряженности вызывает электронаркоз. Переменный ток вызывает у рыб более сильное возбуждение, чем постоянный. После его воздействия рыба долго не может прийти в нормальное состояние - она находится в состоянии своеобразного электрогипноза.
Еще более разнообразно и сложно поведение рыб в полях импульсного электрического тока. Реакции рыб зависят от амплитуды, частоты, формы и продолжительности импульсов. Различные виды рыб реагируют на импульсные поля неодинаково, однако и в этом случае стадии реакций у них такие же, как при воздействии полей постоянного тока.
Проявление отдельных стадий реакций рыб на различные электрические поля зависит от условий среды (электропроводности, температуры), а также от видовой чувствительности рыб к току, их размеров, формы и физиологического состояния.
Итак, при действии на рыб сильных электрических полей можно выделить несколько типичных стадий изменения поведения: первичная пороговая реакция, возбуждение, анодная реакция и электрический наркоз (шок). Примерно по такой же схеме действует возрастающий электрический ток на любой нервно-мышечный аппарат. Это совпадение не случайно. Оно, несомненно, свидетельствует, что поведенческие реакции рыб на сильные электрические поля основаны на процессах в нервно-мышечных элементах. Сильные электрические поля воспринимаются этими элементами рыбы. В результате нарушения их нормальной работы и принудительного сокращения мускулатуры возникает та или иная реакция рыбы.
Однако механизм направленного движения рыб на анод не выяснен. Существуют только гипотезы. Остановимся на некоторых из них.
Первая гипотеза связана с представлением о перераспределении в теле рыб ионов под воздействием электрического поля. В обычном состоянии ионы не «рассортированы». Когда же на рыб начинает действовать электрическое поле, отрицательные ионы группируются в сторону положительного электрода. О перераспределении ионов в теле рыб говорят факты остаточного напряжения после снятия действия внешнего электрического поля. Накопление отрицательных ионов в голове рыбы заставляет рыб двигаться к аноду. В этой гипотезе не все ясно. Непонятно, например, почему рыба движется всегда головой к аноду. Очень часто она в начале действия поля головой повернута в противоположную сторону. В этом случае отрицательные ионы должны были бы накапливаться в хвосте, и рыба должна была бы двигаться хвостом к аноду. Между тем рыба всегда движется головой к аноду.
Согласно другим гипотезам, рыба - генератор биоэлектричества. Биоэлектрическое поле рыбы определенным образом взаимодействует с внешним электрическим полем. В результате у рыбы возникает анодная реакция.
Общие положения гипотез приемлемы. Однако есть моменты, с которыми нельзя согласиться. Так, предполагается, что ток в теле рыб (имеются в виду неэлектрические рыбы) течет от головы к хвосту. Между тем это положение не подтверждается экспериментально. Кроме того, согласно гипотезам, взаимодействие между полями начинается, когда рыба попадает в электрическое поле. При малом напряжении у рыб нет стремления изменить свое положение. Но с повышением напряженности внешнего поля это взаимодействие для рыбы становится ощутимым. В случае течения тока в противоположных направлениях результирующая сила тока уменьшается, и рыба для восстановления электрического равновесия меняет свое положение. Видимо, некоторое увеличение силы тока оказывает на рыбу действие, направляющее ее в сторону анода.
Согласно этим гипотезам, рыба движется к аноду, если напряженность внешнего электрического поля складывается с биоимпульсами ее мышц. В другом случае взаимодействие вызывает отрицательную реакцию.
Анодная реакция, как известно, начинается при очень высокой напряженности внешнего электрического поля - более 50 мВ на 1 см. Напряженность внешних электрических полей, вызывающих анодную реакцию, в 100-10 000 раз выше напряженности биоэлектрических полей. Почему же более слабые электрические поля не вызывают анодной реакции?
Взаимодействие между сильными внешними электрическими и биоэлектрическими полями рыб действительно существует. Но восприятие их рыбами принципиально иное, чем восприятие слабых полей. В сильных электрических полях реакции рыб по своей природе безусловно-рефлекторны. Слабые электрические поля рыбы могут использовать в целях ориентации и общения.

2007-02-27 20:24:42

И в квартире, и на улице, на работе и на отдыхе за городом нас окружают невидимые и практически неощутимые электромагнитные поля (ЭМП). Развитие жизни на планете Земля во многом обусловлено этим важнейшим экологическим фактором.

Среди важнейших сенсорных систем (органов чувств) рыб, к которым относят слуховую, зрительную, вкусовую, обонятельную, осязательную, сейсмосенсорную системы, общее химическое чувство, имеется еще одна система чувств, имеющая немаловажное значение в жизни рыб - электрорецепторная.

Начиная с 1960-х годов, в мире проводятся интенсивные исследования значения самых разнообразных электрических полей в жизни рыб. Особый интерес к этим работам вызван и тем, что в последние десятилетия резко возросло воздействие на рыб различных электромагнитных полей искусственного происхождения. Сильные поля в водной среде сегодня наводятся при работе электрорыбозаградителей, электролове рыбы, в ходе морской геофизической разведки (при использовании методов электрозондирования), «благодаря» работе мощных радиостанций, радиолокаторов, преобразователей электрической энергии, высоковольтных линий электропередач (ЛЭП).

Первые работы в области электрорецепции, электроориентации и чувствительности рыб к электромагнитным полям были начаты в России под руководством В. Р. Протасова. В его труде «Биоэлектрические поля в жизни рыб» (1972) приводились данные о так называемых слабо- и сильноэлектрических рыбах, о механизмах восприятия ими магнитных и электрических полей и их значении в жизни подводных обитателей. Эти исследования положили начало новому направлению биологической науки - электроэкологии .

Всех морских и пресноводных рыб по их способности воспринимать или генерировать самостоятельно электрические поля разделяют на 3 группы: 1) сильноэлектрические, 2) слабоэлектрические и 3) неэлектрические , «обычные» виды.

Сильноэлектрические виды (пресноводный электрический угорь, электрические скат и сом, американский звездочет), у которых в процессе эволюции появились специальные электрические органы, вырабатывающие вокруг тела рыбы сильное электрическое поле с целью нападения или обороны. Для сильноэлектрических рыб способность генерировать в особых органах ток необходима для привлечения жертв, так как электрическое поле вокруг рыбы приводит к электролизу воды, происходит обогащение воды кислородом, что приманивает к угрю рыб, лягушек и других водных животных. Кроме того, сильное электрическое поле способно ввести жертву в состояние электронаркоза. Доказано, что электрическая деятельность облегчает угрю... дыхание в заморных водоемах и болотах: происходит разложение воды в теле рыбы и обогащение крови кислородом, причем водород выводится рыбой наружу. В незаморных водоемах угорь использует собственное электрическое поле как своеобразный «электролокатор» для поиска жертв.

У слабоэлектрических рыб образовывать импульсные электрические поля способны так называемые электрогенерирующие ткани. Эти рыбы применяют свои способности для локации и связи. Слабоэлектрические пресноводные рыбы испускают слабые и кратковременные разряды с постоянной частотой импульсов. Умеют использовать электрические поля и некоторые сельдевые и осетровые рыбы. Обладают способностью испускать электрические разряды такие общеизвестные рыболовам виды как красноперка, карась, окунь, пескарь, вьюн, щука. Первые два вида испускают кратковременные разряды, окунь, пескарь и вьюн - средние по продолжительности, щука - наиболее длительные разряды.

Слабоэлектрические рыбы излучают слабые электрические сигналы. В 1958 году Р. Лиссман установил, что они используют электрополе для ориентации и общения в водной среде.

К неэлектрическим , «обычным» рыбам относится подавляющее большинство видов. Они не могут самостоятельно генерировать электротоки и обладают крайне слабой чувствительностью к электрическим и электромагнитным полям. У этих рыб нет особых морфологических структур для восприятия электрического тока и электромагнитных полей, поэтому их чувствительность ограничивается восприятием полей с напряженностью не более нескольких милливольт на сантиметр.

Таким образом, следует различать 1) нечувствительных (слабочувствительных) к электрическим полям и 2) высокочувствительных (электрочувствительных) рыб, обладающих специализированными электрорецепторами, способными в природной среде воспринимать слабые электрические токи напряженностью от сотых долей до единиц микровольта на сантиметр. Способность чувствовать изменения напряженности электромагнитных полей в водной среде помогают этим рыбам находить добычу, ориентироваться в пространстве, общаться в стаде, уходить из опасной зоны при природных катастрофах.

К высокочувствительным представителям ихтиофауны наших водоемов относят осетровых и сомовых рыб. Интересно, что при исследовании степени восприимчивости разных пресноводных рыб к воздействию электрического тока оказалось, что наибольшей чувствительностью обладала щука, наименьшей - линь и налим, что объясняется наличием у последних толстого слоя слизи, снижающего способность восприятия слабых электрических полей рецепторами кожи.

Учеными-электроэкологами установлено, что не менее 300 из современных 20,9 тысяч видов рыб способны использовать в своей жизни электрические поля. И не только использовать, но и генерировать его «собственноручно»! Например, в конце 1980-х - начале 1990-х гг. группой ученых Института эволюционной морфологии и экологии животных РАН было доказано, что черноморские скаты рода Raja (морские лисицы) могут передавать и принимать собственные электрические сигналы на расстоянии до 7-10 метров, что значительно превышает возможность общения этих хрящевых рыб при помощи других дистантных органов чувств (Барон и др., 1985, 1994).

Восприятие рыбами электрических (электромагнитных) полей. Слабые электрические токи и магнитные поля воспринимаются главным образом рецепторами кожи рыб. Многочисленные исследования показали, что почти у всех слабо- и сильноэлектрических рыб электрорецепторами служат производные органов боковой линии. У акул и скатов электрорецептивную функцию выполняют так называемые ампулы Лоренцини - особые слизистые железы в коже.

Более сильные электромагнитные поля воздействуют непосредственно на нервные центры водных организмов.

Слабоэлектрические рыбы обладают высокой чувствительностью к электрическим полям, что позволяет им находить и различать в воде объекты, определять соленость воды, использовать разряды других рыб с информационной целью в межвидовых и внутривидовых отношениях. Например, обыкновенный сом Silurus glanis имеет высокочувствительную электрорецептивную систему, воспринимающую плотность тока 10 -10 А/мм, т. е. речной гигант способен почувствовать в 2-4 метрах от себя разряженную «пальчиковую» батарейку!

Электрические поля постоянного тока воспринимаются рыбами в виде двигательной реакции: они вздрагивают при включении - выключении тока. Если напряженность поля увеличивается, у пресноводных рыб наблюдается оборонительная реакция: рыбы приходят в сильное возбуждение и стараются уплыть из зоны действия поля. У исследованных карася, щуки, окуня, гольяна, осетра резко учащается ритм дыхания. Примечательно, что для одного и того же вида рыб более крупные особи раньше и сильнее реагируют на ток, чем более мелкие.

Если напряженность поля продолжает расти, происходит анодная реакция (движение рыбы по направлению к аноду), после чего рыба теряет равновесие, подвижность, перестает реагировать на внешние раздражители - наблюдается электронаркоз. Еще бόльшее повышение напряженности поля приводит появлению в крови рыб значительного количества ацетилхолина, блокирующего нормальное течение дыхания и деятельность нервной системы, что приводит, в итоге, к гибели рыбы (Протасов, 1972).

Переменный ток вызывает у рыб более сильное возбуждение, чем постоянный. После его воздействия рыба долго не может прийти «в себя» - она находится в состоянии электрогипноза.

В импульсных электрических полях поведение рыб еще более сложно и разнообразно, причем реакции их зависят от частоты, формы и продолжительности импульсов.

Водные организмы и высоковольтные ЛЭП. Развитие энергетики привело к повсеместному распространению высоковольтных линий переменного тока напряжением 500 кВ (так называемые ЛЭП-500). Они тянутся на многие километры, через поля, перелески, луга и водоемы. В зоне линии электропередачи всегда присутствует повышенный электромагнитный фон, обуславливающий сильное воздействие на естественную флору и фауну. Напряженность электрического поля на поверхности земли или воды под ЛЭП-500 (несмотря на 10-15-метровое расстояние до проводов) может достигать 100-150 В/см (Бондарь, Частоколенко, 1988 и др.)

В настоящее время вопрос действия ЛЭП на водные системы очень слабо изучен, причем исследования по данной проблеме начали проводиться только в начале 1980-х гг. Известно, что высоковольтные линии, пересекая природные и искусственные водоемы, наводят в водной среде электрические поля разной величины.

По мнению В. Р. Протасова (1982), напряженность электрических полей переменного тока, образуемых воздушными переходами ЛЭП, достигает 50 мВ/см, подводными переходами (кабельные линии) - более 50 мВ/см, причем плотность тока в воде достигает 10 мкА/мм 2 . Такие градиенты потенциала могут создавать в водной среде неблагоприятный абиотический фон, так как приближаются к порогу реакции возбуждения большинства неэлектрических рыб. Кстати, при такой плотности тока в водоеме начинается гибель некоторых гидробионтов, например, пресноводной гидры.

Электромагнитные поля (ЭМП), создаваемые ЛЭП, сопоставимы с порогами чувствительности рыб, которые обладают электрорецепторами. ЭМП в состоянии вытеснить многих рыб и беспозвоночных из зоны наведенных электротоков. Большую опасность высоковольтные ЛЭП могут нести в районе пересечения нерестилищ ценных видов рыб, на нерестовом ходу осетровых. Например, веслонос проявляет реакцию избегания при напряженности электрического поля в 15 мкВ/см (Kalmijn, 1974), т. е. еще до попадания в зону наведенных электрических полей.

Однако это не значит, что все рыбы избегают акваторий, над которыми проходят линии электропередачи. Автор настоящей статьи лично наблюдал, как летом 1995 года на большом степном пруду в Кировоградской области (Украина) на глубокой яме под ЛЭП-500 была поймана щука массой почти 10 кг, несомненно, обитавшая там (а не приплывшая откуда-то!) Это притом, что хищница относится к рыбам с наибольшей чувствительностью к воздействию электрического тока.

По мере удаления от линии электропередачи напряженность электрического поля резко уменьшается, поэтому можно говорить об ограниченной зоне электромагнитного загрязнения водоема шириной не более 15-20 метров. Хотя в масштабах большой реки или озера зона электромагнитного негативного влияния может измеряться сотнями квадратных метров.

По мнению новосибирских ученых, при нормальном режиме эксплуатации воздушных линий электропередачи опасная для рыб плотность тока может образовываться только ЛЭП-750 и выше (Войтович, 1998). При прокладке подводных кабелей напряженность электромагнитного поля низкая, если фазы укладываются в треугольник в траншее, вырытой на дне водоема (Данилов и др., 1991).

Специалисты из Новосибирска предложили минимизировать негативное воздействие на ихтиоценозы путем снижения мощности, передаваемой по воздушным и подводным линиям электропередачи, в ключевые периоды жизни рыб - во время нерестовых миграций и нереста; увеличения толщины экрана и брони на кабельных подводных линиях триаксиального исполнения.

Гидробионты и электролов. На многих водоемах СНГ применяется электролов рыбы. Самыми производительными орудиями электролова являются электрифицированные тралы, во время работы которых возникают значительные по величине электромагнитные поля. Электротралы систематически применяются на верхневолжских водохранилищах (в том числе на Горьковском и Рыбинском), в Костромской и Ивановской областях.

В работе применяется электроловильный комплекс ЭЛУ-6М, используется импульсный электрический ток напряжением 450 В и частотой от 20 до 70 Гц (Асланов, 1996).

Осенью 1998 года Институтом биологии внутренних вод РАН (пос. Борок) при участии представителей бассейнового управления Верхневолжрыбвод и Геофизической обсерватории ИФЗ РАН на Горьковском водохранилище проводились комплексные исследования экологических последствий применения ЭЛУ-6М.

Экспериментальные траления с включенными и выключенными электроподборами показали более высокую эффективность электротралового лова рыбы в сравнении с обычным. Мировой опыт эксплуатации систем электролова в морях и пресных водах свидетельствует о том, что электрическое поле обычно повышает уловистость трала на 2-70% (иногда даже более 200%!) Главный эффект от электрификации тралов достигается за счет дезориентации рыб, снижения их подвижности, появления угнетенности, сгона рыб со дна, удерживания пойманных рыб в кутке.

Многочисленные эксперименты показали, что электротрал оказывает положительное влияние на размерный состав пойманных рыб: крупные особи более чувствительны к действию электротока и чаще оказываются в орудиях лова.

Исследователи выяснили, что уловистость близнецового трала в вечерне-ночные часы по сравнению с дневными была на 296-369% выше. Наиболее часто в электротрал попадались густера, судак, щука, жерех, язь, плотва и налим, практически игнорировали наведенные электрические поля и не попадали в орудия лова синец, чехонь, серебряный карась, белоглазка, берш и уклея). Причем серебряный карась чаще отмечался в обычном трале, чем в электрифицированном.

Интересны данные о выживаемости и плавательной способности рыб после попадания в сильное электрическое поле. В ходе дневных и ночных визуальных наблюдений за поверхностью воды (Горьковское водохранилище) на акватории протяженностью более 15 км позади электротрала погибшей рыбы не обнаружено, только 2,6% от общего числа пойманных рыб всплывали на поверхность в состоянии электронаркоза (некрупные жерех, чехонь и уклея). Полное восстановление плавательной способности у рыб происходило мгновенно. Причем более мелкие рыбы восстанавливались после воздействия электрического поля намного быстрее крупных. Например, у 30-сантиметровых жерешат восстановление занимало несколько секунд, а у 43-47-сантиметровых - более 6 минут.

Анализ проб зоопланктона и зообентоса показал отсутствие отрицательных воздействий электрического поля на водных беспозвоночных (Извеков, Лебедева, 2001).

Большинство литературных данных свидетельствует о том, что при соблюдении правил рыболовства и инструкций по эксплуатации ЭЛУ электрическое поле оказывает на рыб в основном дезориентирующее влияние и не приводит к гибели рыб или длительному нарушению плавательных способностей.

ВСТАВКА. Действие электрического тока на рыбу объясняется различной электрической проводимостью воды и тела рыбы: последняя оказывается своего рода проводником, соединяющим точки электрического поля с разными потенциалами. Электроток течет по этому проводнику от точки с более высоким потенциалом к точке с более низким. При этом сила тока пропорциональна длине рыбы.

Несколько неожиданное подтверждение данным, полученным российскими учеными, получили сотрудники Института биологии Днепропетровского национального университета (Украина). В конце июля 2003 года экспедиционная группа ихтиологов стала свидетелями удара молнии в пойменное озеро близ Днепра. Спустя пять минут ученые оказались на месте происшествия. Мгновенно наведенное сильнейшее электромагнитное поле ввело в электронаркоз более 30 крупных лещей (от 1 до 2,2 кг) и пестрого толстолобика массой более 31 кг. Мелкой рыбы, а тем более малька, в изобилии кормившегося на мелководьях, среди пораженной рыбы не было ни на поверхности, ни на дне. Следовательно, чувствительность крупных особей к электрическим полям оказалась на порядок выше, чем у «мелочи».

Электробраконьерство. Промышленные орудия электролова разрабатывались учеными на протяжении нескольких десятилетий, определялись пороговые значения напряженности электрического поля, влияние использования электротралов на водные системы, возбудимость многих видов рыб при разной напряженности электрического поля в воде. Только после скрупулезных научных исследований орудие лова рыбы такого рода было рекомендовано к использованию в некоторых естественных водоемах.

Принцип действия «электроудочки», которая состоит на вооружении у браконьеров, основывается на поражении любой рыбы запороговыми значениями напряженности электрического поля. «Снасть» состоит из подсачека, к которому подведены провода от аккумулятора и трансформатора-преобразователя, усиливающего разряд от аккумуляторных клемм в 50-150 и более раз. Фактически, на выходе «электроудочка» имеет до 1000-1500 В, радиус «работы» в зависимости от солевого и минерального состава воды- до 10-12 метров.

При включении прибора в воде напряженность электрических полей может достигать 150-250 мВ/см, а плотность тока в воде превышает 30 мкА/мм 2 . Такие градиенты потенциала губительны для всего живого под водой. Удар электрическим током у рыб приводит к мгновенному сокращению всех мышц, в результате чего ломается позвоночник, разрывается плавательный пузырь, происходит кровоизлияние во внутренние органы рыб. Животные, попавшие непосредственно в эпицентр действия «электроудочки», практически сразу погибают, те, кто в момент электроудара находился на периферии, получают сильный шок, застывают в наркотизированном ступоре на несколько минут. До 70% рыб в эпицентре получают разрывы плавательных пузырей и тонут, устилая дно водоема толстым слоем.

Такие картины наблюдались спортсменами-подводниками на днепровских водоемах неоднократно.

Кстати, рыба, которой посчастливилось уплыть из зоны поражения и сачка браконьера, в течение нескольких сезонов не имеет возможность отнереститься из-за образующихся в половых путях спаек. В июле 2001 года на Днепродзержинском водохранилище рыболовами-любителями О. Старушенко, С. Зуевым, Р. Новицким была подобрана с поверхности воды погибающая 17-килограммовая самка сазана. Анатомический анализ показал, что, вероятно, рыба стала жертвой электробраконьерства: во внутренней полости находилось более 6 кг икры, выметать которую рыбина не могла из-за пресловутых спаек в яйцеводах, на гонадах и других органах отмечались многочисленные кровоизлияния.

Учитывая, что ущерб, наносимый природе электробраконьерством, огромен и не поддается точному исчислению, в настоящее время такая «рыбалка» согласно действующему законодательству приравнивается к уголовным преступлениям...

Расскажите об электрических рыбах. Какой величины ток они вырабатывают?

Электрический сом.

Электрический угорь.

Электрический скат.

В. Кумушкин (г. Петрозаводск).

Среди электрических рыб первенство принадлежит электрическому угрю, живущему в притоках Амазонки и других реках Южной Америки. Взрослые особи угря достигают двух с половиной метров. Электрические органы - преобразованные мышцы - располагаются у угря по бокам, простираясь вдоль позвоночника на 80 процентов всей длины рыбы. Это своеобразная батарея, плюс которой находится в передней части тела, а минус - в задней. Живая батарея вырабатывает напряжение около 350, а у самых крупных особей - до 650 вольт. При мгновенной силе тока до 1-2 ампер такой разряд способен свалить с ног человека. С помощью электрических разрядов угорь защищается от врагов и добывает себе пропитание.

В реках Экваториальной Африки обитает другая рыба - электрический сом. Размеры его поменьше - от 60 до 100 см. Специальные железы, вырабатывающие электричество, составляют около 25 процентов общего веса рыбы. Электрический ток достигает напряжения 360 вольт. Известны случаи электрического шока у людей, купавшихся в реке и нечаянно наступивших на такого сома. Если электрический сом попадается на удочку, то и рыболов может получить весьма ощутимый удар током, прошедшим по мокрым леске и удилищу к его руке.

Однако умело направленные электрические разряды можно использовать в лечебных целях. Известно, что электрический сом занимал почетное место в арсенале народной медицины у древних египтян.

Вырабатывать весьма значительную электрическую энергию способны и электрические скаты. Их насчитывается более 30 видов. Эти малоподвижные обитатели дна, размером от 15 до 180 см, распространены главным образом в прибрежной зоне тропических и субтропических вод всех океанов. Затаившись на дне, иногда наполовину погрузившись в песок или ил, они парализуют свою добычу (других рыб) разрядом тока, напряжение которого у разных видов скатов бывает от 8 до 220 вольт. Скат может нанести значительный удар током и человеку, случайно соприкоснувшемуся с ним.

Помимо электрических зарядов большой силы рыбы способны вырабатывать и низковольтный, слабый по силе ток. Благодаря ритмическим разрядам слабого тока с частотой от 1 до 2000 импульсов в секунду, они даже в мутной воде превосходно ориентируются и сигнализируют друг другу о возникающей опасности. Таковы мормирусы и гимнархи, обитающие в мутных водах рек, озер и болот Африки.

Вообще же, как показали экспериментальные исследования, практически все рыбы, и морские, и пресноводные, способны излучать очень слабые электрические разряды, которые можно уловить лишь с помощью специальных приборов. Эти разряды играют важную роль в поведенческих реакциях рыб, особенно тех, которые постоянно держатся большими стаями.

Седьмое чувство: электричество в жизни рыб

Почему седьмое?

Рыбы, в сравнении с нами, имеют гораздо более богатое сенсорное оснащение. Проще говоря, у них есть такие органы чувств, которых у нас нет, и, соответственно, они способны получать из внешней среды такую информацию, которая нам в принципе недоступна. Мы имеем пять каналов поступления информации - это зрение, слух, обоняние, вкус и осязание. У рыб все это тоже имеется, но, в дополнение, есть еще и знаменитая "боковая линия", позволяющая им "слышать" низкочастотные звуковые сигналы и воспринимать смещения окружающей рыбу воды. Эту способность рыб часто называют "шестым чувством".

Но шестью чувствами сенсорные возможности рыб не ограничиваются. У них есть и седьмое чувство - электрическое. Таким образом, мир, в котором существует рыба, гораздо более богат и многообразен, чем наш, и немаловажную роль в нем играет электричество.

Зачем рыбам "электрическое чувство"?

Прежде всего, нужно сказать, что все без исключения живые организмы - и водные, и сухопутные - создают вокруг себя слабые электрические поля. Они возникают "автоматически", в процессе обычной жизнедеятельности (дыхание, движение и т.д.) в результате сокращения мышц и электрических процессов в нервной системе. Слабое электрическое поле зарегистрировано, в том числе, и вблизи тела человека (на расстоянии 15-25 см). Существует даже такой термин - "электроаура".

Понятно, что в электропроводной среде, такой как вода, электрические поля вокруг живых объектов (Рис. 1) могут служить полезной информацией, например, для хищников, которые такими объектами питаются. Нужно только иметь специальные органы чувств, способные воспринимать эти поля. И действительно, как говорилось, огромное число рыб такими органами обладают, но об этом чуть позже.

С другой стороны, электрическое поле может быть использовано и самим его обладателем. Ведь попадание внутрь этого поля любого предмета неизбежно изменит форму силовых линий поля (см. Рис. 2). Если, опять же иметь специальные органы чувств, воспринимающие такие "деформации" собственного поля, можно таким образом получать важную информацию об окружающем мире.


Рис. 2

Обе эти возможности - восприятие чужих электрических полей и анализ окружающих предметов по изменениям собственного поля - рыбами используются, но у разных видов эти способности развиты в разной степени.
Существует несколько видов рыб, у которых способность создавать вокруг себя электрическое поле развилась до совершенно невероятного уровня. Это - так называемые СИЛЬНОЭЛЕКТРИЧЕСКИЕ рыбы. К ним относятся знаменитые электрический угорь и электрический сом и некоторые скаты. Эти рыбы имеют специальные вырабатывающие электричество органы, которые способны производить электрические разряды такой силы, что их вполне можно использовать для охоты (что все перечисленные рыбы и делают). Понятно, что, имея возможность создавать такое мощное поле, они активно используют и возможности электролокации, в том числе, и для обнаружения своих жертв.

Другую группу составляют рыбы СЛАБОЭЛЕКТРИЧЕСКИЕ. Сюда входят некоторые африканские и американские виды. У них также имеются органы-электрогенераторы, но они несравненно слабее, чем у сильноэлектрических рыб. Для охоты они слабоваты, но для электролокации вполне годятся.

Наконец, подавляющее большинство рыб относится к числу НЕЭЛЕКТРИЧЕСКИХ. И совершенно, как мы увидим, незаслуженно. Во-первых, как уже говорилось, все они, хотят они того или не хотят, имеют вокруг себя электрическое поле. Во-вторых, очень многие обладают и специальными органами чувств, воспринимающими электричество. Такие органы - их называют ЭЛЕКТРОРЕЦЕПТОРАМИ - известны у всех акул, скатов и химер, у осетров и у многих других рыб.

Но есть множество видов, у которых никаких электрорецепторов не обнаружено. Это как раз те рыбы, которые нам наиболее интересны: щука, судак, окунь лещ, плотва и вообще все карповые - все эти виды не имеют электрорецепторов. Но они при этом обладают электрочувствительностью! Это выяснилось сравнительно недавно, и ученые до сих пор не могут понять, как им это удается.

Но какое все это имеет отношение к рыбалке? Вопрос этот не риторический, потому что, если почитать большинство учебников и сводок по ихтиологии, то придется сделать вывод, что никакого.

Дело в том, что долгое время принято было считать, что электрические явления играют важную роль в жизни только тех рыб, у которых есть электрогенераторные и электровоспринимающие органы. Это, как говорилось, сильноэлектрические и слабоэлектрические рыбы, а также те виды, которые лишены специальных органов, производящих электрические разряды, но имеют при этом органы электрочувствительности - электрорецепторы. К ним относятся акулы, скаты, химеры, все осетрообразные, а также сомы и ряд экзотических рыб, таких как двоякодышащие, африканские полиптерусы и, наконец, знаменитая латимерия. Понятно, что из всего этого списка для нас интересны, разве что, сомы.

Все же остальные рыбы, а к ним относятся все наши традиционные "рыболовные" виды, никаких специальных органов для восприятия электрических полей не имеют, и при обсуждении темы электричества в учебниках по ихтиологии вообще не упоминаются. Я, по крайней мере, не нашел таких упоминаний ни в одном известном мне руководстве, как отечественном, так и зарубежном, в том числе и последних лет издания.

Между тем, существует достаточно специальных экспериментальных исследований, в которых показано, что многие "неэлектрические" виды, во-первых, способны генерировать вокруг себя слабые электрические поля, а во-вторых, обладают способностью чувствовать электрическое поле и оценивать его параметры. Другое дело, что до сих пор непонятно, каким образом, с помощью каких органов чувств они это делают.

Почему эти результаты не попали на страницы учебников - другой вопрос, но мы вправе сделать вывод, что электричество является одним из факторов, влияющих на поведение не только сильно- или слабоэлектрических, но всех вообще рыб, в том числе и тех, которых мы с вами ловим. Поэтому к рыбалке эта тема имеет самое прямое отношение (даже если не брать в рассмотрение электроудочку).

Поля рыб-"неэлектриков"

Впервые слабое электрическое поле у неэлектрической рыбы было зарегистрировано у морской миноги американцами Клиеркопером и Сибакином в 1956 году. Поле фиксировалось специальной аппаратурой на расстоянии нескольких миллиметров от тела миноги. Оно ритмично возникало и исчезало синхронно с дыхательными движениями.

В 1958 году было показано, что электрическое поле, причем более сильное, чем у миноги, может генерировать вокруг себя и речной угорь. Наконец, начиная с 1960-х годов способность рыб, ранее считавшихся неэлектрическими, излучать слабые электрические разряды была установлена на многих морских и пресноводных видах.

Таким образом, сегодня совершенно не приходится сомневаться в том, что все без исключения рыбы производят вокруг себя электрические поля. Более того, у многих видов параметры этих полей измерены. Несколько примеров величин разрядов неэлектрических рыб приведены в таблице внизу страницы (замеры проводились на расстоянии около 10 см от рыбы).

Электрическая активность рыб сопровождается постоянным и импульсными электрическими полями. Постоянное поле рыбы имеет характерный рисунок - голова относительно хвоста заряжена положительно, и разность потенциалов между этими участками колеблется у разных видов от 0,5 до 10 мВ. Источник поля расположен в районе головы.

Импульсные поля имеют сходную конфигурацию, они создаются разрядами частотой от долей герца до полутора килогерц.

Чувствительность рыб-"неэлектриков"

Чувствительность к электрическим полям у разных видов рыб без электрорецепторов сильно варьирует. У одних она сравнительно невысока (в пределах десятков милливольт на сантиметр), у других сопоставима с чувствительностью рыб, обладающих специальными органами электрического чувства. Например, американский угорь в пресной воде чувствует поле величиной всего 6,7 мкВ/см. Тихоокеанские лососи в морской воде способны ощущать поле величиной 0,06 мкВ/см. При грубом пересчете, с учетом большего сопротивления пресной воды, это означает, что в пресных водах лососи способны чувствовать примерно 6 мкВ/см. Очень высокой электрочувствительностью обладает и наш обыкновенный сом. Способность воспринимать слабые электрические поля установлена и у таких видов, как карп, карась, щука, колюшка, гольян.

По мнению большинства ученых, роль электрорецепторов у всех этих рыб играют органы боковой линии. Но считать этот вопрос окончательно решенным нельзя. Вполне может оказаться, что у рыб существуют и еще какие-то механизмы, которые позволяют им чувствовать электричество, и о которых мы пока даже не подозреваем.

Электрический мир

Итак, мы приходим к выводу о том, что все рыбы, хотя и в разной степени, обладают электрочувствительностью, и все рыбы, опять же в разной степени, создают вокруг себя электрические поля. У нас, следовательно, есть все основания предполагать, что эти свои электрические способности рыбы как-то используют в своей повседневной жизни. Каким же образом, и в каких областях жизнедеятельности они могут это делать?

Прежде всего, отметим, что электрочувствительность применяется рыбами (угорь, сельди, лососи) для ориентации в океане. Кроме того, у рыб развита система электрической коммуникации - взаимодействие друг с другом на основе обмена электрической информацией. Это используется при нересте, при агрессивных взаимодействиях (например, при охране своей территории), а также для синхронизации движений рыб в стае.

Но нам интереснее те аспекты, которые более непосредственно связаны с рыбалкой - поиск пищи, различение съедобных и несъедобных предметов.

Прежде всего, надо иметь в виду, что электрические поля создают вокруг себя не только рыбы, но и другие животные, в том числе, и организмы, которыми рыбы питаются. Например, слабое электрическое поле возникает в области брюшка плывущего рачка-бокоплава. Для рыб такие поля - ценный источник информации. Широко известны опыты с акулами, которые легко находят и пытаются откопать зарытый в песок миниатюрный электрогенератор, имитирующий своими разрядами биотоки рыбы.

Но то - акулы. А интересуют ли электрические поля пресноводных рыб? Очень любопытные и поучительные опыты на этот счет проводились еще в 1917 году с американским сомиком амиурсом. Авторы этих экспериментов занимались тем, что совали в аквариум с амиуросом палочки, сделанные из разных материалов - стекла, дерева, металла. Оказалось, что присутствие металлической палочки сомик ощущал с расстояния в несколько сантиметров, а, например, на стеклянную палочку реагировал только при ее прикосновении. Таким образом, амиурус чувствовал слабые гальванические токи, которые возникали при помещении металла в воду.

Еще интереснее, что реакция сомиков на металл зависела от интенсивности тока. Если поверхность соприкосновения с водой металлической палочки составляла 5-6 см 2 , у сомиков возникала оборонительная реакция - они уплывали. Если же поверхность контакта с водой была меньше (0,9-2,8 см 2), то у рыб возникала положительная реакция - они подплывали и "клевали" место контакта металла с водой.

Когда читаешь про такие вещи, возникает большой соблазн потеоретизировать на тему о площади поверхности мормышки, о биметаллических мормышках и блеснах, представляющих собой, по сути, маленькие гальванические электрогенераторы, и тому подобных вещах. Но понятно, что теории такого рода так и останутся теориями, и любым рекомендациям, сделанным на их основе, грош цена. Взаимодействие рыбы с приманкой - процесс очень сложный, в котором участвуют самые разные факторы, и электричество среди них, скорее всего, далеко не главный. Тем не менее и о нем не стоит забывать. Во всяком случае, некоторые возможности для работы воображения и экпериментирования с приманками тут имеются. Почему бы, например, не предположить, что металлические блесны, особенно крупные, могут нести с собой чрезмерно сильное поле, которое не привлекает, а, наоборот, отпугивает рыбу? Ведь его можно убрать, покрыв блесну каким-нибудь прозрачным составом, непроводящим электричество.

И как тут не вспомнить тот примечательный факт, что вплоть до 60-х годов прошлого века финские и норвежские рыбаки при морской ловле камбалы пользовались деревянными крючками, сделанными из можжевельника. При этом они утверждали, что на деревянный крючок камбала ловится лучше, чем на металлический. А не в электричестве ли тут дело? Ну и так далее - простор для размышлений тут широкий.

Но вернемся к рыбам. Как уже говорилось в начале этой статьи, помимо восприятия чужих электрических полей, рыбы могут получать информацию об окружающем и по изменению параметров своего собственного поля. Ведь любой предмет, попадающий в поле рыбы, если он по электропроводности отличается от окружающей воды, будет неизбежно менять конфигурацию этого поля. Существует целый ряд исследований, в которых показано, что электрические разряды резко усиливаются у активно кормящихся "мирных" рыб, а также у хищников (например, у щуки) в момент броска на добычу. Причем, у ночных и сумеречных хищников это выражено сильнее, чем у дневных. Может быть, это означает, что в момент захвата пищи рыбы "включают" дополнительные каналы информации для более тщательного анализа ситуации? "Ощупывают" потенциальную добычу силовыми линиями своего поля? Рано или поздно ученые дадут ответ на этот вопрос, но нам-то ждать этого не обязательно - можно просто держать в уме такую возможность. То есть понимать, что рыба может знать об электрических свойствах нашей приманки гораздо больше, чем мы предполагаем, и, главное, чем мы сами о ней знаем. К примеру, я почти уверен, что хищники отлично "понимают", атакуя воблер, что эта "рыбка" сделана из какого-то странного материала - она меняет конфигурацию их поля иначе, чем настоящая рыба. Влияет ли это на принятие решения хищником "есть или не есть"? Вполне возможно, особенно если он не слишком голоден.

Немного лирики в заключение

Обращая внимание читателей на электрическую сторону жизни рыб, я бы совершенно не хотел, чтобы кого-нибудь это натолкнуло на мысль использовать электрочувствительность рыб для создания на этой основе некоей "безотказной" приманки, которую рыба брала бы всегда и в любых условиях. Попытки такого рода, не только в "электрической сфере", регулярно появляются на горизонте. То электроблесны, то "вкусный силикон", который хищник не то что не стремится выплюнуть, а, наоборот, спешит поскорее проглотить. Наконец, хитроумные активаторы клева, которые создают у рыбы непреодолимое чувство голода независимо от того, голодна она или сыта.

И это только немногие примеры. Темпы развития науки и технологии таковы, что вполне можно ожидать появления на рынке действительно "безотказной" снасти, которая будет ловить всегда и везде и, главное, независимо от умения и знаний того, кто ей пользуется. Тут есть сугубо этическая, а может, и эстетическая грань, за которой рыбалка уже перестает быть рыбалкой.

Поэтому тем, кто имеет чрезмерную склонность к такого рода разработкам, я хочу напомнить о простом, всем известном факте. Такая "безотказная" снасть уже изобретена и вовсю используется. Это - электроудочка.

Электрические животные – это исключительно рыбы. У них есть способность создавать и использовать мощные электрические разряды для нападения и обороны, у других классов позвоночных такой способности нет. Этот уникальный дар позволяет их обладателям и ориентироваться в окружающем водном пространстве, и общаться с другими особями своего вида. Но не все электрические рыбы генерируют действительно мощные разряды. Это свойственно только некоторым из них, например, является самым сильным электрогенератором среди рыб, создающий разряды напряжением до 600 вольт и больше.

Электрический угорь – сильно-электрическая рыба.

Категории электрогенных рыб

Рыбы, способные создавать электрические импульсы иногда называются электрогенными. По способности к электрогенерации выделяют три главные категории рыб:

  • сильноэлектрические создают разряды напряжением до 600 вольт, способные уничтожить другие организмы;
  • слабоэлектрические не могут своими импульсами убить или как-то навредить жертве;
  • воспринимающие — обладающие свойством электрорецепции: большинство не способны самостоятельно генерировать ток, но улавливают слабые электрические импульсы, возникающие в процессе сокращения мышечных тканей в других организмах.

Сильноэлектрические и слабоэлектрические

К этой категории относится не очень много видов. Все они создают разряды, представляющие опасность для человека и крупных животных, находящихся в воде. Их можно встретить и в пресных водоёмах, и в морской воде. В заболоченных местах бассейна Амазонки в Южной Америке живёт электрический угорь, которого очень боятся аборигенные жители. Ведь именно он вырабатывает электрический ток наибольшей мощности (до 650 В). Водоёмы тропических и субтропических районов Африки являются местом обитания электрического сома, взрослые особи которого способны создавать отдельные импульсы до 250 вольт.

В море в прибрежных частях Атлантического океана вдоль побережий Африки и на север до юга Великобритании электрогенной рыбой является . Он является источником электрических импульсов мощностью до 220-ти вольт, которые очень ощутимы для человека.

Все электрические рыбы из этой категории имеют большие электрические органы, вес которых составляет до одной трети от общей массы тела.

Электрические разряды слабоэлектрических рыб настолько слабые, что не могут навредить жертве. Поэтому они генерируются не для умерщвления или обездвиживания добычи, а только с целью её найти. Другой целью является обнаружение препятствий и других объектов в окружающем водном пространстве – для ориентирования. Электрические сигналы служат и способом общения для особей одного вида.

Пассивная и активная электролокация

Очень слабые электрические разряды исходят от всех морских организмов, что является результатом сокращения их мышц. Но улавливать эти разряды могут только рыбы, которых называют электрическими.

Есть две группы таких рыб:

1 — обладающие способностью только обнаружить электрические поля других живых существ в воде: это пассивная электролокация;

2 – умеющие улавливать электрические сигналы от других организмов и создавать собственные: активная электролокация;

Электролокационные хищники

Многим рыбам пассивная электролокация очень помогает во время охоты. Наиболее известны акулы и скаты. Например, имеет на морде очень много электросенсорных зон, благодаря которым она чувствует электрические поля зарывшейся в песок добычи и сразу определяет её местонахождение. Никаких шансом спастись у потенциальной жертвы нет. Такие же свойства присущи и американской куньей акуле. По результатам научных экспериментов с синими акулами стало ясно, что эти хищницы атакуют предпочтительно добычу, имитация которой создавалась электрическими полями. Добыча, имитируемая в эксперименте запахами, атаковалась реже.

Преимущества такой электролокационной охоты очевидны: благодаря ей электрические рыбы выживают за счёт хорошо маскирующихся жертв, которых другим способом обнаружить нельзя. Например, акула-молот так находит свою еду в мягком грунте.


Акула-молот – категория воспринимающих электрических рыб.

Активная электролокация

Принцип активной электролокации у рыб очень похож на эхолокацию, которой пользуются летучие мыши. Посылаемые в окружающее водное пространство электрические сигналы встречают на своём пути какие-либо объекты. Встреченный объект искажает электрическое поле, созданное рыбой, и она фиксирует это искажение, используя электрорецепторы на поверхности своей кожи. Так определяется местонахождение объекта и его габариты, и также электрические свойства. При помощи такой электролокации электрогенная рыба может получать очень разную информацию об окружающих объектах. Например, для слабоэлектрической отмечена способность отличать живой материал от неживого. Эти рыбки живут в мутных слабо освещённых водоёмах, и электролокация является лучшим способом ориентироваться в таких условиях. Электрический орган, создающий необходимые для этого электрические импульсы небольшой мощности, располагается в области хвостового стебля.


Рыба-слон – слабо-электрическая рыба.

С какими целями рыбы выпускают электрические сигналы?

Электрические импульсы генерируются рыбами для достижения разных целей, для каждой из которых создаются разные сигналы:

  • Мощные разряды создаются электрическими органами для обездвиживания добычи и для защиты от врагов. Такие разряды могут убить другое живое существо.
  • Менее мощные электрические импульсы являются средством общения электрогенных рыб.

Для общения генерируются сигналы с определёнными характеристиками. Это происходит постоянно, и от электрической рыбы идёт поток информации: видовая принадлежность генерирующей его особи, её готовности или не готовность к размножению, какова степень агрессивности. Если в стае данного вида существует внутривидовая иерархия, то сигнал даёт понимание социального статуса особи, отправившей его.

Изучение «рыбьего языка» очень сложный процесс, хотя учёные достигли определённых результатов и получили много интересной информации.



Похожие публикации